ASTR 511

Galactic Astronomy

Lecture 10 Kinematics, Rotation, Oort Constants

A note about scheduling

- Slated to have final lecture on Thursday, March 2 (prospective grad visit)
- But it turns out I can't be here March 2 :(
- Would folks be available instead on Friday, March 3?

Questions about Homework(s)?

- A few still working on HW2 (that's AOK!)
- HW3 nominally due this week
- Final Project: Part 1 due this week
- This one does need to be turned in, so I can make sure you have some topic ideas!

More Fun with Coordinate Systems

- We've seen galactocentric (X, Y, Z)
- There's of course (v_{X}, v_{Y}, v_{Z})
- Now behold: (u, v, w) : galactic cylindrical coordinates, centered on us, and associated velocities: (U, V, W)
- Galactocentric cylindrical coordinates: $\left(v_{r}, v_{\phi}, v_{z}\right)$
- Galactocentric spherical coordinates: (r, ϕ, θ) and $\left(v_{r}, v_{\phi}, v_{\theta}\right)$
- NOTE: v_{ϕ} sign flipped between cylindrical and spherical systems...

"6-D Phase Space"

- This is ~all you can know about an objects instantaneous dynamics:
- 3-D positions (u, v, w)
-3-D velocities (U, V, W)
- Measured as: (RA, Dec, parallax, pm_RA, pm_Dec, RV)
- Gaia DR3 can do them all!
- Positions, parallax, PM for 1.4 Billion stars
- RVs for 33 Million stars
- All other surveys combined: a few million stars

"6-D-Phase Space"

"7-D Phase Space"

Including metallicity!

- This is ~all you can know about an objects instantaneous dynamics:
- 3-D positions (u, v, w)
-3-D velocities (U, V, W)
- Measured as: (RA, Dec, parallax, pm_RA, pm_Dec, RV)
- Gaia DR3 can do them all!
- Positions, parallax, PM for 1.4 Billion stars
- RVs for 33 Million stars
- All other surveys combined: a few million stars

Ages from Velocities

- We mentioned this last week, but let's show a good example!
- Previously: discussed some ways to get ages into a "Wallerstein-Tinsley" diagram like this (e.g. isochrone \& chemical model fits)
- Also said scale-height is related to stellar age
- Velocities: stars get knocked around over time! (Stellar migration) Signatures in the velocity distribution(s)

Ages from Velocities

- W, same as v_{Z}
- Max vertical velocity shows trend in age (\& strong trend in chemistry!)
- σ_{W} is the age metric

- This typically used to infer age for a population, though large (outlier) values are clearly suggestive of old ages!

Ages from Velocities

- See some of the same trends seen in U (or radial velocity, v_{R})
- Vertical signal is stronger: less radial migration

 more vertical scattering the disk

Ages from Velocities

- Vertical velocity dispersion: Long history of use, but currently being compared directly to many other age metrics for crosscalibration

Gaia-Enceladus/Sausage Velocities

- As published in e.g. Belokurov+2018 uses galactic spherical velocities
- NOTE: they use v_{θ} for rotation, disagrees with
coords written out by e.g. Bovy Galaxies book:
- NOTE: they use v_{θ} for rotation, disagrees with
coords written out by e.g. Bovy Galaxies book: (r, ф, θ)

- v_{ϕ} sign flipped
- Define your coords, esp. the azimuthal direction!

Motions of 7,000,000 Gaia stars
 radial motion, km/s

Local Standard of Rest (LSR)

- How fast is the normal velocity at our location in the disk?
- Classic values:
$\left(v_{r}, v_{\phi}, v_{z}\right)=(0,220,0) \mathrm{km} / \mathrm{s}$
- Sometimes see $v_{\phi}=240 \mathrm{~km} / \mathrm{s}$ (assumed w/ Gaia DR2), also written $V_{L S R}$
- Good:
$v_{L S R}=232.8 \mathrm{~km} / \mathrm{s}$ (Schönrich+2010)
- Troubling: might get different answers from stars versus gas or other global tracers of rotation

Solar Peculiar Motion

- How much are we moving relative to the LSR?
- Again: (Schönrich+2010)
- $(U, V, W)=(11.1,12.24,7.25) \mathrm{km} / \mathrm{s}$
- We're not moving very fast relative to the LSR!

Galactic Rotation

- We live in a rotating galaxy!
- I love this example from Gaia DR2 using radial velocities
- Here's an example of remaking this figure by Bovy w/ galpy

Oort Constants

- MWY isn't rotating like solid body, there's differential rotation!
- Oort (1927) the classic reference
- Fairly readable derivation on Wikipedia for classic constants A and B
- Bovy book very good here!
- IAU standard values: $\mathrm{A}=15 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}, \mathrm{B}=-10 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}$

Oort Constants

- Assuming circular rotation for everything, and azimuthal symmetry of MWY
- A is the azimuthal shear (diff rot)
- B is the rotation at the solar radius

$$
\begin{aligned}
& V_{\mathrm{obs}, \mathrm{r}}=A d \sin (2 l) \\
& V_{\mathrm{obs}, \mathrm{t}}=A d \cos (2 l)+B d
\end{aligned}
$$

- Note funny units for A \& B: km/s/kpc
- So if you know PM (tangential velocity) and parallax (distance), you can solve for A, B!

Oort Constants

- IAU standard values:
$A=15 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}, \mathrm{B}=-10 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}$
- Gaia DR1: $A=15.3, B=-11.9$

$$
\begin{aligned}
& V_{\mathrm{obs}, \mathrm{r}}=A d \sin (2 l) \\
& V_{\mathrm{obs}, \mathrm{t}}=A d \cos (2 l)+B d
\end{aligned}
$$

Oort Constants

- But wait, our galaxy isn't perfectly axisymmetric...
- There are higher-order terms in the derivation of Oort Constants via Taylor series expansion
- Next Constants called: C and K
- Can include dependents on galactic longitude (I) and latitude (b)

- Bovy (2017) showed w/ Gaia DR1 C\&K are small but non-zero!
- Others finding same thing w/ Gaia DR2, e.g. Li+2019

"6-D-Phase Space"

"7-D Phase Space"

Including metallicity!

- Why do we work in these high-D spaces?
- Group of stars (streams, remnants, disks, etc) may have very different appearing orbits, but share underlying orbital properties
- Stars from a merger probably have similar momentum
- Stars born in the disk experience similar scattering histories
- Can we reduce dimensionality? (YES!)
- Combine dimensions (e.g. velocity vectors)
- Remnants have same "Integrals of motion", even after phase mixing

Toomre Diagram

- U+W (Radial + Vertical velocity) as a function of \mathbf{V} (rotational velocity)
- V in LSR frame!
- One potential space to pull out kinematic populations
- Mentioning because it's a classic diagram!

Toomre Diagram

- Can also see features in galactocentric velocities!
- This diagram explores an "integral of motion" i.e. reducing dimensionality of 6-D phase space
- Here you can pick out disk vs. groups in the halo

Lindblad Diagram

- Two "integrals of motion":
- Total energy versus vertical angular momentum
- e.g. a good explanation of quantities by Carollo+2014
- $L_{Z}=R_{X Y} \times v_{\phi}$
- $E=L_{Z}^{2} / 2 r^{2}+\Phi(r, Z)$

Action Angles \& Coordinates

- Foundation laid out by Binney \& Tremaine 2008 (famous textbook)
- Need a proper dynamics course... to fully grok this (i.e. I'm about to do a bad job explaining this today!)
- A review by McMillan \& Binney (2008)
- A practical view from Trick+2019 in Gaia DR2
- Compute momentum vectors, e.g. J_{R}, J_{Z} or J_{ϕ}
- L_{Z} is also an action (in an axisymmetric potential)

Action Angles \& Coordinates

- Trick+2019

Action Angles \& Coordinates

- Trick+2019

Action Angles \& Coordinates

Phase Space Spiral

- An intriguing feature discovered in Gaia DR2 (Antoja+2018) Mentioning this also because it's recent and neat!
- Tracing the $\left(Z, v_{Z}\right)$ plane for nearby stars
- Disk is "perturbed"

Phase Space Spiral

- Spiral structure changes as function of phase-space (or action-space)
- e.g. see Hunt+2022 with Gaia DR3

Phase Space Spiral(s)

- Could be caused by the bar (Khoperskov+2019)
- Or a merger (Binney \& Schönrich 2018)
- Or a few mergers... (Hunt+2022)
- If you like this stuff, check out Adrian Price-Whelan's AAS 237 page \& work!

6-D Takeaways

- Gomplicated Elegant spaces or projections of 6-D position-velocity to view dynamics and orbital motion in
- Buy donuts for dynamicists!
- Compelling for picking out substructure and understanding its origin
- Several spaces are highly model dependent (i.e. shape gravitational potential)
- Once again: the MWY looks like a mess of mergers!

