# **ASTR 511 Galactic Astronomy**

# Lecture 06 Structure & Properties of the Milky Way

Prof. James Davenport (UW)

Winter 2023



### Homework 2

- Any Questions?
- People getting bottlenecked by n=2000 limit for "basic queries"?
  - Any good workarounds (folks using ADQL? GCNS?)



### King Profiles

• Cluster density profiles developed by Ivan King (1962)



$$\int f = k \left\{ \frac{1}{\left[1 + (r/r_c)^2\right]^{\frac{1}{2}}} - \frac{1}{\left[1 + (r_t/r_c)^2\right]^{\frac{1}{2}}} \right\}^2.$$
 (14)  
In a typical globular cluster  $r_t/r_c$  is of the order of 30, so that for small to moderate values of  $r/r_c$  Eq. (14) differs only slightly from Eq. (13) with

Through the kind cooperation of the Editor, Figs. 5-8 have been printed on such a scale that they can be used directly with inch-scale graph paper. The horizontal and vertical units are 1.25 inches and 0.5 inch, respectively.





### **Final Project**

- Part 1: Pick your topic, due in a couple weeks (Feb 17)
  - LMK if you're stuck!
- This will be the subject of both your Final Presentation and your Term Paper

### Today

- We've already toured the "Solar Neighborhood" (Lecture 2)
- and reviewed many of the observable features of the Milky Way (Lectures 3 & 4)
- Today let's tour the Galaxy more broadly, especially focused on this beautiful disk!





### Coordinates

- Galactocentric XYZ **Coordinate Frame**
- (X,Y) are the top-down view of the Galaxy
  - Sun is at  $(X = R_0, Y = 0)$
- Z is the vertical direction, very important for dynamics & star counts!
  - Sun is at Z = 27 pc(<u>Chen+2001</u>)





### Coordinates

- Ignore spiral structure... assume galaxy is azimuthally symmetric
- Common to see things plotted in (R, Z) where  $R = \sqrt{X^2 + Y^2}$
- Sometimes written as  $R_{XY}$ , as distinct from  $R_{XYZ}$  used in studying e.g. dark matter halo



# **Distance to Galactic Center:** $K_0$

- values considered (though 8kpc favored by some 100yrs ago!)
- People even recently claim much smaller values
  - Anderson (2014)
- orbit of star "S2" at the Galactic Center (GRAVITY collab. 2018)

This number critical to SO MUCH of our geometry... Historically wide range of

• IAU standard value has long been  $R_0 = 8.5$  kpc, still see this used a LOT (e.g. in the Gaia Catalog of Nearby Stars, using the "Besancon" MWY model)

• e.g.  $R_0 = 7.5$  kpc by modeling globular cluster distribution: Francis &

Best estimate currently seems to be: 8.122 kpc, measured by modeling

# **Distance to Galactic Center:** $K_0$

- A word on astropy...
- be aware of it!
- e.g. (RA, Dec, dist)  $\rightarrow$  (X,Y,Z) and trying to match to existing catalogs or models.

### • The default value for $R_0$ changes between Astropy versions! This is good, but

You can get in major yet subtle trouble when switching coordinate frames,

- The disk is ~26kpc in diameter... how do you draw that radius?
- "Isophotal", i.e. pick a surface brightness cutoff? (<u>Goodwin+1998</u>)
- Half-light size? (e.g. de Vaucouleurs 1948)
- These are all effective sizes, based on survey depth... something maybe more physical?
  - A threshold in stellar mass density?  $1M_{\odot}/\text{pc}^2$  (Trujillo+2020)
- Neutral H traced out to at least 25kpc (Levine+2006)







• in (R,Z) space: An "exponential disk", e.g. Jurić+2008

neighborhood within  $\sim 2$  kpc. They show a striking simplicity in good agreement with a double exponential disk model,

$$\rho(R,Z) = \rho(R_{\odot},0)e^{R_{\odot}/L} \exp\left(-\frac{R}{L} - \frac{Z+Z_{\odot}}{H}\right)$$

where  $\rho$  is the number density of disk stars,  $R_{\odot}$  and  $Z_{\odot}$  are the cylindrical coordinates of the Sun, and L and H are the exponential scale length and scale height, respectively. This model pre-





- <u>Jurić+2008</u>
- Vertical density profile seems to support 2 disks:
  - H~300pc, L~2500pc
  - H~900pc, L~3500pc
- Good 1st-order description of the disk
- Does it work for all stars? All ages?
   All galactocentric radii? (Obv. not in detail)





### Many other disk profiles (parameterizations) explored...

1-) Simple double exponential disk (Fig. 12):

$$\rho(R, Z, l) = \exp\left(-\frac{R - R_0}{R_H} - \frac{|Z - Z_0(R)|}{Z_H}\right)$$
$$Z_0(R) = \begin{cases} (R - R_0) \times A_W & R > R_0\\ 0 & R < R_0 \end{cases}$$
$$Z_H(R) = \begin{cases} \zeta_H(R) = \zeta_H(R) \\ \zeta_H(R) = \zeta_H(R) \end{cases}$$

2-) Double exponential disk + thick disk (Fig. 13):

$$\rho(R, Z, l) = \exp\left(-\frac{R - R_0}{R_H} - \frac{|Z - Z_0(R)|}{Z_H}\right) \ (1 - R_{Sol})$$

$$+\exp\left(-rac{R-R_0}{R_{HT}}-rac{|Z|}{Z_{HT}}
ight)R_{Sol}$$
 Then:  
 $ho(R,Z)$ 

3-) Isothermal disk:

$$ho(R,Z,l) = \exp\left(-rac{R-R_0}{R_H}
ight) \ {
m sech}^2\left(-rac{|Z-Z_0(R)|}{Z_H}
ight)$$

4-) Isothermal disk + thick disk (Fig. 14):

$$\rho(R,Z,l) = \exp\left(-\frac{R-R_0}{R_H}\right) \operatorname{sech}^2\left(-\frac{|Z-Z_0(R)|}{Z_H}\right) (1-R_{Sol})$$

$$+\exp\left(-rac{R-R_0}{R_{HT}}-rac{|Z|}{Z_{HT}}
ight) R_{Sol}$$

5-) Disk with variable scale height (Fig. 15, l=180, Fig. 18, l=240):

$$\rho(R, Z, l) = \exp\left(-\frac{R - R_0}{R_H} - \frac{|Z - Z_0(R)|}{Z_H(R)}\right) \times (1 + A_T)^{-1}$$

 $\boldsymbol{Z}_{H}(\boldsymbol{n})$ 

6-) Disk (Fig. 17 l=1

$$= \begin{cases} (1 + (R - R_0) A_T) \times H_Z & R > R_0 \\ 1 & R < R_0 \end{cases}$$
  
with variable scale height and flattening  
.80, Fig. 19, l=240): Let's define:  
 $F(x,\beta) = 1 - \exp(-\beta \exp(-x))$ 

$$\rho(R, Z, l) = \exp\left(-\frac{R - R_0}{R_H}\right) \times F\left(\frac{|Z - Z_0(R)|}{Z_{HT}}, \beta(R)\right)$$
$$\times \left((1 + A_T) \int_0^{+\alpha} F(x, \beta) dx\right)^{-1}$$
Vith the same definition of  $Z_H(R)$  as for the previous hodel, and:

W m

$$\beta(R) = \begin{cases} 1 + (R - R_0) A_F & R > R_0 \\ \\ 1 & R < R_0 \end{cases}$$



### Alard (2000)

### **A Second "Thick" Disk?**

- The "thick disk" first discovered in 1980's as an excess component in stellar density profile as a function of height (Z), when trying to study Disk+Halo
- Usually attributed to <u>Gilmore & Reid (1983)</u>, but early hints in e.g. <u>Yoshii (1982)</u>
- Seem to have distinct kinematic, chemical, & age distribution of stars... how?!
- Debate reignited in 2000's with e.g. SDSS.
  - Is it even a distinct component, or is the disk just have continuous heating?





### **A Second "Thick" Disk?**

- General wisdom: stars are "heated" (i.e. given higher vertical velocities) over time due to scattering from arms/GMC/etc
- Stars born near midplane. Older stars found higher up
- describing stellar populations
- Early suggestions: thick disk must be older
- Backed up by chemical cartography (we'll discuss that later!)

Vertical density AND vertical velocities therefore very useful for statistically



### **Other stellar migration?**

- within the disk.
- e.g. <u>Lian+2022</u>



Stars also undergo "radial migration", again due to dynamical interactions

• This mostly a random scattering of 1-2 kpc, net radial migration weak (none?)

### **A Second "Thick" Disk?**

abundance distributions

JO BOVY<sup>1,4</sup>, HANS-WALTER RIX<sup>2</sup>, AND DAVID W. HOGG<sup>2,3</sup> <sup>1</sup> Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA; bovy@ias.edu <sup>2</sup> Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany <sup>3</sup> Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003, USA Received 2011 December 6; accepted 2012 March 30; published 2012 May 15

 Yet many still use concept to describe the vertical density and kinematic profiles of the disk

### Milky Way Thin and Thick Disk Kinematics with Gaia EDR3 and RAVE DR5

Katherine Vieira<sup>1</sup>, Giovanni Carraro<sup>2</sup>, Vladimir Korchagin<sup>3</sup>, Artem Lutsenko<sup>2</sup>, Terrence M. Girard<sup>4</sup>, and William van Altena<sup>5</sup> <sup>1</sup>Instituto de Astronomía y Ciencias Planetarias, Universidad de Atacama, Copayapu 485, Copiapó 1531772, Chile <sup>2</sup>Dipartimento di Fisica e Astronomia, Universitá di Padova, Vicolo Osservatorio 3, I-35122 Padova, Italy; giovanni.carraro@aas.org <sup>3</sup> Southern Federal University, Stachki 194, Rostov-on-Don 344090, Russia <sup>4</sup> Department of Physics, Southern Connecticut State University, 501 Crescent Street, New Haven, CT 06515, USA <sup>5</sup> Department of Astronomy, Yale University, 52 Hillhouse Avenue, New Haven, CT 06511, USA Received 2022 January 3; revised 2022 April 26; accepted 2022 April 27; published 2022 June 13

### Debate sort of ongoing... Some claim no distinct population, especially in

### THE MILKY WAY HAS NO DISTINCT THICK DISK

### **A Second "Thick" Disk?**

- Seems like there probably is a distinct 2nd component
- May be at least partially due to the Gaia-Enceladus merger (<u>Helmi+2018</u>)
- Also explains much of the inner halo density & kinematic
- And maybe another weird feature of the disk...



### THE MILKY WAY'S WARP











https://sci.esa.int/web/gaia/-/the-milky-way-s-warp

### Warped Disk

- Long seen in gas (HI)
- Now traced w/ stars
- Here: Cepheids from WISE + Gaia DR2
- Likely caused by merger from dwarf galaxy... but which?!
  - Sagittarius ?



<u>Chen+2019</u>



## Warped Disk

- Warp shape seems to precess
- z (kpc)

- Moves with Galactic rotation (but slower)
- Favors a single dynamical interaction origin, rather than "the relic of the ancient assembly history..."



Poggio+2020

## Warped Disk

- Warp shape seems to precess
- Moves with Galactic rotation (but slower)
- Favors a single dynamical interaction origin, rather than "the relic of the ancient assembly history..."



Poggio+2020



### **Flared Disk**

- Scale-height increases at large galactocentric radius (R)
- Seen in both stars and gas
- Usually ascribed to property of the thick disk at large radius
- e.g. see Chrobáková+2022 with Gaia
- Probably another byproduct of merger-driven thick disk









Flare



