ASTR 511 Galactic Astronomy

Lecture 01 Introductions & Review

Prof. James Davenport (UW)

Winter 2023

Introductions

- Course Website: <u>https://jradavenport.github.io/astr511wi23/</u>
- Your instructor... me!
 - Prof. James Davenport
 - Associate Director of the DiRAC Institute @ UW Astro
 - I work on stars, SETI, big data, time domain astronomy, wacky ideas
 - I like coffee, gardening, the PNW,

Communication

University of Was 👻 🕜	# astr421-w22 ~
) Threads	+ Add a bookmark
தி All DMs	
@ Mentions & reactions	
🌣 Slack Connect	
: More	
Connections	
▼ Channels	#astr421-w22
# astr421-w22	You created this channel today. This is the very beginning of the #astr421-w22 channel. Description:
# general	Winter 2022 (edit)
# random	2+ Add people R Send emails to channel
+ Add channels	
 Direct messages 	Today ~
	James R. A. Davenport 10:35 PM joined #astr421-w22.
	James R. A. Davenport 10:35 PM
	set the channel description: Stellar Observation and Theory, Winter 2022
	Jack Ford 10:39 PM
	Joined #astr421-w22 along with 20 others.
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
	Message #astr421-w22
	+ C> & © @ <u>Aa</u>

- Zoom (obv)
 - Stable Zoom link all quarter (hopefully)
- Slack
 - Good for general Q's, asking for help
 - If you didn't get added, ping me!
- Email, b/c l'm old
- Course website
- Canvas: for grades only.

COVID protocols...

- We will strive to be 1) safe, 2) empathetic, and 3) practical
- If you get sick or may be exposed, please let us know as appropriate
- If you need to miss a class activity because of a COVID-related disruption, let me know
 - I will strive to do the same... it happened last year!

Code of Conduct

- be tolerated both in-person & virtually.
- Work together, be kind
- No tool shaming

Absolutely no bullying, harassing, disruptive, rude, or exclusive behavior will

<u>https://www.washington.edu/cssc/for-students/student-code-of-conduct/</u>

<u>https://www.washington.edu/cssc/for-students/academic-misconduct/</u>

Evaluation

- Assignments (70%)
 - Turned in via **Dropbox links**
 - Planning for ~4 homeworks
- Final Project (30%)
- Notes about GROUP WORK No extra credit

Most (all?) assignments will be codingfocused. We expect most people will use Python/Jupyter, but any language/tool that you want to use is OK!

Final Project term paper requires you to use LaTeX, and give a presentation

Next Week: AAS 241

- This class will not be held during AAS 241
 - You will learn more there than I can teach you in 2 sessions.
- There is a (mostly fun) "scavenger hunt" assignment: <u>Homework 1</u>, posted now!
 - If you are not attending AAS, you can complete it using the arXiv.

 I'll make time on Thursday for this also, but are there any questions/ thoughts/concerns you have about AAS?

What's the point?

- A word on teaching/course philosophy
 - No book? Term paper?! Why do we have these lectures?

Read the syllabus

- All these details and more are in the syllabus.
- Any questions? Let's take a moment...

esyllabus.

Introduce yourselves!

To make sure we all know each other, can you please share:

- Preferred Name & Pronouns
- Year & Advisor(s)

• Have you ever seen the Milky Way or any other galaxy? If so, when?

Now, on to Lecture 01!

Course Goals

This course has been "Galactic Astronomy", "Galaxies", "Galactic Structure"...

ASTR 511 Galactic Structure (3) Kinematics, dynamics, and contents of the galaxy. Spiral structure. Structure and evolution of galaxies.

Version 5 from Feb 9, 2015

ASTR 511: Galactic Astronomy

- about the study of other galaxies?
 - Some aspects are the same, some are very different!

ASTR 511, Winter 2021: Galaxies as Galaxies

So, is this course about the history, contents, and structure of the Milky Way, or

Course Goals https:

Course Goals

- Both... but with an emphasis on the Milky Way
 - Because I think about nearby things, and it is timely...
- Now is a golden age for galactic astronomy observations

https://www.sdss4.org/surveys/apogee/

7 kpc

Course Goals

Also an amazing time for theory!

https://www.tng-project.org/media/

Course Goals

Going to (roughly) structure the course from near to far

Astro Jargon Review

 Magnitudes (apparent vs absolute) & flux $m_i = -2.5 \log_{10} \left(\frac{F_i}{F_0} \right)$ $m - M = 5 \log_{10} d[pc] - 5$ $B - V \equiv m_R - m_V \equiv M_R - M_V$

- Colors

Bold statement: magnitudes are a good unit!

Astro Jargon Review

- Parallax & distance modulus
- 3D positions (ra,dec,distance)

$m - M = 5 \log_{10} d[pc] - 5$ $m - M = 5 \log_{10}(1/\pi) - 5$

Gaia DR2 CMD 0 5 ۵ 10 15 · Paris -2 З 0 $G_{BP} - G_{RP}$

hrd esa.int/web/gaia/gaiadr2 Somos \geq https://ww

Astro J

Stars

 Since they are one of the primary ways we understand the structure and probably know

history of our galaxy, let's start with a quick refresher, all of which you should

Mass

- It factors into all timescales at work, most other general properties (e.g. radius, temp, etc) are directly related to mass
- However, not much about the star itself is actually a direct measurement of mass
- This makes mass relatively easy to estimate by proxy, and difficult to directly measure.
- Enter: Kepler's laws (esp. eclipsing binary stars & exoplanets)
- Also useful: lensing!

Mass is probably the most important/fundamental property for a star

Temperature (T_{eff})

- Probably the most common property to measure
- Many ways to constrain!
- Spectroscopically (e.g. Wien's Law)
- The "effective temperature" is the Temp that a star would have if it were a perfect <u>blackbody</u> with the same luminosity $L = 4\pi R^2 \sigma_{SB} T^4$
 - Very close to the surface temp for some stars
 - Harder to estimate for cool stars

Temperature (T_{eff})

• Also can constrain with photometry via the "color"

24

Luminosity

- Easy to constrain, difficult to directly measure
- Usually need to know distance

- The total luminosity @ all wavelengths, known as "bolometric" luminosity (or absolute magnitude)
 - Typically you estimate luminosity in a given band, and then add a "bolometric correction"
 - $M_{bol.\odot} \approx 4.74$

$L = 4\pi R^2 \sigma_{\rm SR} T^4$

$m_i = -2.5 \log_{10} \left(\frac{F_i}{F_0} \right)$ $m - M = 5 \log_{10} d[pc] - 5$

https://www.iau.org/static/resolutions/IAU2015_English.pdf

Composition (aka Metallicity)

- Typically summed up as [Fe/H], i.e. the log ratio of Fe/H relative to the solar amount
 - Also abundances of individual elements are studied, as well as groups (e.g. $\left[\alpha/\text{Fe}\right]$)
- Primarily determined via spectroscopy, modeling atomic absorption lines
 - High resolution VERY helpful

Distance

- Parallax! The best! But only for nearby stars (Gaia is making this *better*, +1*Billion* stars, but not perfect!)
- Many other clever ways:
 - Stellar clusters $m M = 5 \log_{10} d[pc] 5$
 - RR Lyr, standard candles, the "distance ladder", etc...
 - Eclipsing binaries
 - e.g. LMC distance to 2% Still the benchmark
- Can be estimated for a star if you assume it is main sequence (e.g. "photometric parallax") or take a spectrum

Pietrzyński et al. (2013)

- metal-rich, more lines, redder
- BUT, some sensitivity in the IR too

Davenport & Dorn-Wallenstein

Composition (aka Metallicity)

- The situation is... more difficult for low-mass stars lacksquare
- Cool temperature, spectra dominated by *molecules*
 - Molecules are wild...

GI 265A

Composition (aka Metallicity)

- studies of the composition of our galaxy!
- Wonderful new term: chemical cartography

Doing this for hundreds of thousands (or even millions) of stars enables new

Age

- For main sequence stars, incredibly difficult to constrain, cannot be "measured" directly...
- 10% uncertainty considered very good!
- A good review: <u>Soderblom (2010)</u>
- Cluster ages (open and globular) a critical historical benchmark, still key!
 - Mostly information in the "turn off"

Sandage (1957)

Age

- A few other ways to estimate ages, none work for all stars/timescales:
 - White-dwarf cooling sequence

Althaus+2010

• Lithium abundance

"Gyrochronology" - i.e. a spin-clock Stars lose angular momentum over time, perhaps predictably* Key paper establishing this idea: <u>Skumanich (1972)</u>

Carlos+2016

Other Properties

- Radius
- Density
- Surface Gravity
- Binarity

Very interesting, but not critical for Galactic Astronomy

The H-R Diagram

- <u>Theorists</u>: Temp, Lum Or Temp, log g
- <u>Observers</u>: Color, Mag

A Rosetta Stone for understanding the The H-R Diagram lives & properties of stars Gaia DR2 CMD

 $G_{BP} - G_{RP}$

Next time:

The Solar Neighborhood

