ASTR 421 Stellar Observations and Theory

Lecture 16 Stellar Evolution: II

Prof. James Davenport (UW)

Today

Post-Main Sequence Evolution

• BOB, Ch 13.2+

This area reserved for webcam overlay

Previously...

This area reserved for webcam overlay

- back

• Today we're focusing on everything else that happens here

• Let's once again recall: gravity wins if there's no support, HSE always fighting

 Many of the same limits/timescales we've discussed already

Post-MS Evolution

• There is SO MUCH here... we can't do it justice in 1 lecture.

 So let's walk through broadly what happens, mostly focused on the Sun

• Fair Warning: I'm going to skip stuff you care about...

/erlay

1. The Main Sequence

- What happens here sets the stage for what comes after (of course)

• We've already seen the Sun changes over the MS, as star burns H -> He

1. The Main Sequence

- Already fusion isn't happening just in the CENTER of the core any more

BP2000, Lecture 12

• Over the MS, star is changing it's **mean composition**, its creating a He-rich core. This drives what happens once H fusion no longer possible (end of MS)

Geneva stellar evolution models

1. The Main Sequence

This evolution during MS is seen for all stars

 Gradually getting brighter and cooler as they burn fuel, core contracts

Amard+2019

Kippenhan Diagrams

- Hashes here are convective regions
- Best way to see the time-evolution of the interior structure of the star
- Here we can compare (early) evolution for stars of different masses

2. End of the H-burning MS

- over MS as we've said
- Eventually fall out of the sweet spot for H fusion.
- - The MS turn-off

• Run out of fuel, we approach this gradually, core contracting and changing

• X too low. Contracting core (increase density) & increasing temp can't get enough H to fuse, support in core declines ... gravity wins, core contracts!

2. End of the H-burning MS

- Interesting feature at the turn-off: a fast "jog" for higher mass stars ($M>1.2M_{\odot}$)
- These are stars that had convection in the core, lots of mixing. Entire core runs out of H, entire core rapidly contracts when fusion shuts off!
- For lower mass stars, core contraction is gradual.

2. End of the H-burning MS

- Interesting feature at the turn-off: a fast "jog" for higher mass stars $(M > 1.2M_{\odot})$
- These are standard of the set o
- For lower ma

his area reserved for webcam ov

3. Sub-Giant Phase

- Core out of support, contracts (on K-H timescale)
- Core temp steadily increasing
- H fusion in a shell begins around core

 Shell fusion acts like a "MIRROR"... why?! (core contracts, envelope expands)

The "mirror principle" for shell burning

(One way to interpret this effect)

- As core contracts, heats up... this would increase temp of H shell, but recall fusion efficiency very sensitive to temperature! So shell can't contract as much
- So the shell basically stays put, meaning the envelope has to expand to preserve gravitational potential energy
- This principle is why we see a "giant" star phase
 - Causes envelope to expand greatly
 - Big T gradient -> convection!

Sub-Giant

- Shell fusion causes envelope to grow slowly
- Core contracts, is "degenerate", lots of He, & hot... but not enough to ignite!

 Hits the Hayashi limit (point C), ~half of outer envelope is convective. As core continues to contract, envelope must expand rapidly. Luminosity increases!

RGB

- Red Giant Branch phase goes "up" the Hayashi line
- He core continues to contract

- Shell moves out over time
- D: "first dredge up" Convective zone reaches place where MS core used to be, brings lots of He and N to surface

RGB

• E: hits a snag... The shell fusion reaches place where convective zone was

• This called the "Red Giant Branch Bump" (RGBB)... not to be confused with the "Red Clump"

Milone+2012 (47 Tuc)

TRGB

- Reach a max luminosity, "tip" of the RGB
- He core finally ignites
 - "The Helium Flash"
- Happens super fast, (minutes) tends to break stellar models...

- But we don't see stars "jump" from the TRGB to the horizontal branch, though its been proposed, should be quick (years?)
- TRGB used as a "standard candle"

Horizontal Branch

- He core fusion "main sequence" (points G-H)
- Still have H fusion in a shell, so the mirror effect happens^{0.0}

- Mass loss from the He Flash (top of Kippenhan diagram)
- Not long-lived: 120Myr for sun, ~20Myr for $5M_{\odot}$
- This where RR Lyr live!

Horizontal Branch

- Gets its name from studies of globular clusters, can be spread out a lot
- You can see a "gap" in the HB this is due to the **RR Lyr**!

https://commons.wikimedia.org/wiki/File:M5_colour_magnitude_diagram.png

	_
	-
	_
	-
	Π.
	5.0

AGB

- Up it goes again (2 phases of AGB)
- Now with H and He shell fusion!
- Up against almost the same Hayashi line, slightly hotter

- Forming a degenerate C/O core
- He shell runs out of fuel, but H shell can cause it to reignite (He shell flashes), causes thermal pulses
- Tons of mixing w/ each pulse, drives mass loss!

AGB

- Tons of mass loss
- Whole phase is fairly short (few Myr)
- What is left in the core IS a white dwarf

 The envelope finally gets fully stripped away from thermal pulses (and dust condensation, etc)

Planetary Nebulae (PNe) • Post AGB, the core contracts & gets HOT

- The core is now a WD (~0.6Msun)
- This hot star ionizes the material kicked out by the AGB phase

Planetary Nebulae (PNe)

- Lots of shapes/sizes for PNe.
 Due to winds, dust, binaries, **B** fields...
- More than 2000 known in MWY (González-Santamaría+2021, w/ Gaia)
- Can even see them in nearby galaxies!

aia) ies!

This area reserved for webcam o

This area reserved for webcam overlay

White Dwarf

0 MG 10 · Ext. 10 З 0 2 4

 $G_{BP} - G_{RP}$

- The star is held up by e- degeneracy pressure
 - Density structure similar to a polytrope
- Composition of WD determined by initial mass of stellar core, which stages of fusion it gets to
- Small envelope of material still around it, (where these absorption lines comes from!)

White Dwarf

• Typical mass ~ $0.6M_{\odot}$, cools over time

 can use to get ages for WD's if you have a good model for the composition & crystallization. "Cosmochronology"

The End

- And this is where our story ends... its no longer a star
- Gas has been dramatically returned to the ISM, young WD has lots of ionizing photon to add pressure to things
- If it's higher mass ($M > 8 M_{\odot}$) it will explode as a SNe
 - LOTS of pressure added to the ISM!

