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Lecture 13 
Stellar Structure: II
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Today
• Stellar Structure Equations


• Polytropes


• The Lane-Emden Equation
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Stellar Structure Equations

M ρ

T P

• Last time we looked at  
solar structure qualitatively 



Stellar Structure Equations
• The goal is to write equations that describe the state of gas inside a star,  

making some simplifying assumptions, including:


• Spherical symmetry


• Steady state 


• LTE


• Even “simple” models can be very complex, esp.  
when we start adding effect of opacity, composition


• Let’s look at the general equations first, and then  
a particular set of solutions (polytropes)
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Stellar Structure Equations
• You’ll see these written as either a function of Radius or Mass


• 


• I’ll just focus on eqns as a function of Radius for now (as in BOB Ch 10)  
This is called the “Eulerian form”… but the “Lagrangian form” is perhaps 
more elegant, since stars don’t change M much over their lives, but DO 
change R (as we’ve already seen!)


• I’m not going to derive these all for you here,  
do read through Ch 10 of BOB!

dm = 4πr2ρ dr
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dr r

ρ



1. Mass Conservation
• Simple enough… the mass in a shell of constant density.


• Usually you see this rewritten slightly: 
 




• Boundary  
Conditions at 
r=0 & r=R

dm
dr

= 4πr2ρ
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dr r

ρ

dm = 4πr2ρ dr



2. Hydrostatic Equilibrium
• Star is static, acceleration throughout the interior must be 


• ,   where  is acceleration


• The change in pressure with radius (aka the pressure gradient) must balance 
the inward force of gravity

≈ 0
dP
dr

= − G
Mrρ
r2

= − ρg g = GMr /r2
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GRAVITY

Pressure

aka: Conservation of Momentum



2. Hydrostatic Equilibrium

• ,   where  is acceleration


• Interestingly, this can also be written as: 
 

, if we think back to Lecture 05, where we defined 

dP
dr

= − G
Mrρ
r2

= − ρg g = GMr /r2

dP
dτ

=
g
κ̄

dτ = − κρ dr
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aka: Conservation of Momentum



• All the light that shines into a layer of the star  
must shine out (unless light is created: the core)


• This can be written like mass conservation: 

, where  is the energy released  
 
(generated through fusion, neutrinos, or gravity)


• This “luminosity gradient” is flat everywhere  
except the core, 

dL
dr

= 4πr2ρ ϵ ϵ

3. Energy Conservation
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dr r

ϵ



4. Energy Transport Equation(s)
• This one is much harder… how does energy move through the star radially?


• 3 possible transport mechanisms: 
Conduction (not important for dwarf or giants, but matters for e.g. white dwarfs) 
Radiation (we’ve discussed this lots! Opacity important) 
Convection (remember the old pot of boiling water)


• Each mechanism has different solution to the  

relevant differential equation: 


• The “temperature gradient”

dT
dr
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4. Energy Transport Equation(s)
• For radiative transport, the temperature gradient is: 




• This has lots of pieces that are familiar… can almost re-write as “flux transport”: 

•  
 
 

• And several other ways of writing this that I don’t 
find any more intuitive

dT
dr

=
3κ̄ρL

64πr2σT3

dF =
L(κ̄ρ)dr

4πr2
= σ (T3dT)
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basically T4
Recall: l = 1/κρ

Missing a constant still



4. Energy Transport Equation(s)
• Q: When does a star use convective instead  

     of radiative energy transport?


• A: When the temperature gradient is high! 
 
i.e. when a blob of gas would become buoyant  
and rise faster than it could radiate energy away 
and come into LTE
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ΔT



4. Energy Transport Equation(s)
• For convective transport, the temperature gradient is: 

, where  is the heat capacity of the gas (at constant pressure)


• As before, other ways of writing this, that aren’t especially intuitive (to me)

dT
dr

= −
g

CP
CP
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ΔT



Stellar Structure Equations
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dP
dr

= − G
Mrρ
r2

= − ρg

dM
dr

= 4πr2ρ

dL
dr

= 4πr2ρ ϵ

dT
dr

=
3κ̄ρL

64πr2σT3

dT
dr

= −
g

CP



Estimate central pressure of a star
• Start w/ hydrostatic equilibrium


• Assume star has a constant density 


• If we adopt some boundary conditions: 


• Then we can solve for 


• Roughly  dyne/cm^2

ρ̄ = M/V = 3M/4πR3

dP
dr

=
Ps − Pc

rs − rc
≈

Pc

R

Pc =
3GM2

4πR4

3 × 1015
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dP
dr

= − ρg



Estimate central pressure of a star
• Start w/ hydrostatic equilibrium


• Assume star has a constant density 


• If we adopt some boundary conditions: 


• Then we can solve for 


• Roughly  dyne/cm^2

ρ̄ = M/V = 3M/4πR3

dP
dr

=
Ps − Pc

rs − rc
≈

Pc

R

Pc =
3GM2

4πR4

3 × 1015
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dP
dr

= − ρg

Not super accurate, but informative



Equation of State (EOS)
• So… a constant density of gas is probably not realistic for most stars!


• The EOS connects “state variables” for a gas, such as 


• You’re possibly familiar w/ EOS for an ideal gas, comes in forms like: 
, can make various substitutions based on type of gas or 

container or experiment…

T, ρ, P, V

PV = nRT = NkBT
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Stellar Structure Equations

M ρ

T P

A few of these curves  
look very similar….



Polytropes and the EOS
• A Polytrope is a self-gravitating sphere, where hydrostatic equilibrium is at 

work


• , where 


•  is called the “polytropic index”


• Can also be written as Const


• Polytropes can be an Equation of State solution!

P ∝ ργ γ =
1 + n

n
n

pVn =
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Polytropes and the EOS
• One interesting solution is  (“isobaric”, constant pressure)


• In this case, a constant density sphere 

• A crude approximation of a rocky (incompressible) planet

n = 0
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P ∝ ρ(1+n)/n



Polytropes and the EOS
• Q: So what do we do with them?


• A: we typically use polytropes to describe (approximate) the density and 
pressure structure throughout a star.


• These are NOT proper stellar models, nor solutions to the complexities of 
the EOS!


• Higher : density more heavily weighted towards the center! 

• Typically in astronomy, a polytrope is a solution to  
the Lane-Emden Equation

n
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P ∝ ρ(1+n)/n



• Start w/ HSE: 


• Take derivative with radius, and substitute in mass conservation:


• 


• This describes the state of the self-gravitating star 
w/o any knowledge of radiation or transport

1
r2

d
dr ( r2

ρ
dP
dr ) = − 4πGρ
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Lane-Emden Equation
dP
dr

= − G
Mrρ
r2 dM

dr
= 4πr2ρ



Lane-Emden Equation

• 


• Now make a couple of (somewhat opaque) substitutions


•  (polytropic temperature),  (scale radius)


• and since these are polytropes, density and  
pressure are connected: 

1
r2

d
dr ( r2

ρ
dP
dr ) = − 4πGρ

ρ/ρc = θn ξ = r/α

P/Pc = θn+1
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Lane-Emden Equation

•    … now becomes:


• This “simply” solves the density and pressure structure of the star 
with only 1 free parameter: , which describes 
the central concentration of density

1
r2

d
dr ( r2

ρ
dP
dr ) = − 4πGρ

n
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ρ/ρc = θn

ξ = r/α

P/Pc = θn+1

1
ξ2

d
dξ (ξ2 dθ

dξ ) = − θn



Lane-Emden Equation
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1
ξ2

d
dξ (ξ2 dθ

dξ ) = − θn

• Higher : density more heavily  
 towards the center! 

n



• Q: Why are we using these again?


• Computers creating realistic stellar interiors is STILL hard


• Polytropes are a good first assumption for the internal structure of unknown 
bodies (e.g. exoplanets)
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Lane-Emden Equation

• They’re in Homework 4!


