ASTR 421

Stellar Observations and Theory

Lecture 07 Radiative Transfer

Prof. James Davenport (UW)

This area reserved for webcam overlay

Starting section on Radiative Transfer

- "Radiative Transfer" is simply the study of how energy (photons) are transferred to/from a medium of gas
- We've already been working on many of the components!
- Emission (lines, continuous, etc)
- Absorption
- Opacity
- Optical depth

Remember Opacity \& Optical Depth

- (Lecture 5)
- We defined the change of intensity through a medium due to all forms of opacity as: $d I_{\lambda}=-\kappa_{\lambda} \rho I_{\lambda} d s$
- Where κ is our friend, the opacity coefficient (or sometimes called the absorption coefficient)
- We considered regimes where this absorption was dominant (i.e. optically thick)

How about emission?

- Many of the sources of scattering and absorbing we discussed have emission analogs
- Bound-bound (lines), bound-free (radiative recombination)
- "Inverse" scattering (or braking) processes
- Thermal (blackbody) continuum

This area reserved for webcam overlay

How about emission?

- We can then define an emission coefficient (j): $d I_{\lambda}=j_{\lambda} \rho d s$
- As before, can integrate this to demonstrate pure emission:
- $I_{\lambda}=e^{j_{\lambda} \rho s}$

- We don't usually write it this way, its not physical

This area reserved for webcam overlay

How about emission?

- We can then define an emission coefficient (j): $d I_{\lambda}=j_{\lambda} \rho d s$
- Compare/contrast this with the definition for absorption: $d I_{\lambda}=-\kappa_{\lambda} \rho I_{\lambda} d s$
- There is no (-) sign
- There is no initial intensity I_{λ} term, since you can have emission w/o absorption, of course.

This area reserved for webcam overlay

How about emission?

- We can then define an emission coefficient (j): $d I_{\lambda}=j_{\lambda} \rho d s$
- Compare/contrast this with the definition for absorption: $d I_{\lambda}=-\kappa_{\lambda} \rho I_{\lambda} d s$
- There is no (-) sign
- There is no initial intensity I_{λ} term, since you can have emission w/o absorption, of course.

In most atmospheres there is always both emission and absorption going on!

This area reserved for webcam overlay

How do photons reach us?

- Remember it takes a LONG time for photons to wander from the core (where fusion is creating them) to the "surface" (i.e. where they finally escape)
- This is the processes of absorption and emission at work (a "random walk", as the book defines it)
- The book defines the number of steps in this walk to reach the surface as: $N=\tau_{\lambda}^{2}$
- Total optical depth of the sun is $\tau \sim 10^{11}$ so... that's a lot of steps.

How do photons reach us?

- The star is (generally) in equilibrium
- All photons generated in core must escape
- At any given thin layer in the star, very little "flow" of photons upward (toward surface)
- There are gradients in temp, density, pressure... causes a slight "breeze" of photons upwards
- If photon "energy transport" is too low, need some other way to move energy out to the surface to keep in equilibrium...
- We'll get back to this when we talk about convection \& stellar structure...

This area reserved for webcam overlay

Emission \& Absorption

- Both emission and absorption are happening within a volume of gas!

$$
d I_{\lambda}=j_{\lambda} \rho d s \quad d I_{\lambda}=-\kappa_{\lambda} \rho I_{\lambda} d s
$$

- Thus it stands to reason you can combine these two processes:

$$
d I_{\lambda}=\left(-\kappa_{\lambda} \rho I_{\lambda} d s\right)+\left(j_{\lambda} \rho d s\right)
$$

- This is one (simple) way to express the so-called "transfer equation"

Source Function

- The ratio of the emission to absorption coefficients:

$$
S_{\lambda} \equiv \frac{j_{\lambda}}{\kappa_{\lambda}}
$$

- Describes how photons are emitted \& removed by a gas

Path length, s

This area reserved for webcam overlay

Source Function
 $$
S_{\lambda} \equiv \frac{j_{\lambda}}{\kappa_{\lambda}}
$$

- Can be thought of as a "specific intensity" of how much light is emitted at a given point
- Interestingly, has the same units as intensity!

$$
d I_{\lambda}=j_{\lambda} \rho d s \quad d I_{\lambda}=-\kappa_{\lambda} \rho I_{\lambda} d s
$$

- Can infer this (via dimensional analysis) since the I_{λ} term is missing from the emission side
- $[\kappa]=\mathrm{cm}^{2} / \mathrm{g}$
- $[j]=[I \kappa]$
- $[j / \kappa]=[I]$

This area reserved for webcam overlay

Source Function
 $$
S_{\lambda} \equiv \frac{j_{\lambda}}{\kappa_{\lambda}}
$$

- This is very helpful, because we're VERY familiar with a certain formula for the intensity of light in special cases:

$$
B_{\lambda}(\lambda, T)=\frac{2 h c^{2}}{\lambda^{5}} \frac{1}{e^{\frac{h c}{\lambda k_{\mathrm{B}} T}}-1}
$$

- i.e. for a dense (thick) material in Thermodynamic Equilibrium, $S_{\lambda}=B_{\lambda}$

This area reserved for webcam overlay

Radiative Transfer Equation

- We have combined emission \& absorption in our medium

$$
d I_{\lambda}=\left(-\kappa_{\lambda} \rho I_{\lambda} d s\right)+\left(j_{\lambda} \rho d s\right)
$$

- If we divide both sides by $-\kappa_{\lambda} \rho d s$, we get:

$$
-\frac{1}{\kappa_{\lambda} \rho} \frac{d I_{\lambda}}{d s}=I_{\lambda}-S_{\lambda} \quad s_{\lambda}=\frac{j_{\lambda}}{\kappa_{\lambda}}
$$

- We can also bring our friend optical depth back in...

$$
\frac{d I_{\lambda}}{d \tau_{\lambda}}=I_{\lambda}-S_{\lambda}
$$

This area reserved for webcam overlay

Radiative Transfer Equation

- This can be "solved" to find the intensity of light as a function of path length through a medium:

$$
\begin{aligned}
\frac{d I_{\lambda}}{d \tau_{\lambda}} & =I_{\lambda}-S_{\lambda} \\
I_{\lambda} & =I_{\lambda, 0} e^{-\tau_{\lambda}}+S_{\lambda}\left(1-e^{-\tau_{\lambda}}\right)
\end{aligned}
$$

- This is a solution only in a "linear" case
- IRL you need to consider 3D radiative transfer...

Returning to Emission

- Lots of focus on absorption \& thermal emission (B)

Planetary Nebulae

- But let's not forget line emission too!
- Obv. need gas to be hot/heated
- How do these lines actually occur?

https://ui.adsabs.harvard.edu/abs/2018MNRAS.476.3290M/abstract

Wavelength (nm)

This area reserved for webcam overlay

Returning to Emission

- For simplicity, assume there is no radiation entering some pocket of gas (i.e. neglect absorption) $I_{\lambda}=L_{\lambda, 0} e^{-\tau_{\lambda}}+S_{\lambda}\left(1-e^{-\tau_{\lambda}}\right)$
- Assume the cloud is optically thin (τ is very small). Use Taylor series to expand: $e^{-\tau_{\lambda}} \approx 1-\tau_{\lambda}+\ldots$
- So the intensity then becomes:

$$
I_{\lambda} \approx \tau_{\lambda} S_{\lambda}
$$

- i.e. the emission intensity will be strong at λ 's with large τ (but... it's optically thin, so...)

Returning to Emission

- Recall again our friendly definition of optical depth: $d \tau_{\lambda}=-\kappa_{\lambda} \rho d s$
- τ is larger where κ is higher - i.e. primarily emission lines! (consider again all the sources of emission, lines often dominate)
- So finally: $I_{\lambda} \approx \tau_{\lambda} S_{\lambda} \propto \kappa_{\lambda} B_{\lambda}$
- In an optically thin region, very strong emission lines can occur
- This actually an important cooling mechanism for low density gas...
- Why PNe have such strong emission lines!

This area reserved for webcam overlay

Returning to Emission

- What about emission lines from optically thick sources?
- $I_{\lambda}=I_{\lambda, 0} e^{-\tau_{\lambda}}+B_{\lambda}\left(1-e^{-\tau_{\lambda}}\right)$
can't neglect absorption...
- $I_{\lambda, 0}=B_{\lambda}\left(T_{i n}\right)$, and the source function (right) side is $B_{\lambda}\left(T_{\text {out }}\right)$ (assuming LTE)
- Again, fun w/ Taylor Series... $I_{\lambda}\left(\tau_{\lambda}\right) \approx B_{\lambda}\left(T_{\text {in }}\right)+\tau_{\lambda}\left[B_{\lambda}\left(T_{\text {out }}\right)-B_{\lambda}\left(T_{\text {in }}\right)\right]$

Returning to Emission

- $I_{\lambda}\left(\tau_{\lambda}\right) \approx B_{\lambda}\left(T_{\text {in }}\right)+\tau_{\lambda}\left[B_{\lambda}\left(T_{\text {out }}\right)-B_{\lambda}\left(T_{\text {in }}\right)\right]$
- So in "normal" scenario, $T_{\text {out }}<T_{\text {in }}$, resulting intensity is lower i.e. absorption lines
- BUT, if $T_{\text {out }}>T_{\text {in }}$, you see higher intensity (i.e. emission)
- This happens e.g. in the solar Transition/Corona regions, where density decreases but temperature increases
- Lines are weak, but present
- Also in the chromosphere, right above surface

Returning to Emission

Itensity is lower

emission)

This example is from:
http://www.physics.usyd.edu.au/~helenj/SeniorAstro

This area reserved for webcam overlay

Next time:

- Starting putting pieces together to understand line profiles more!
- HW 3 is now posted

This area reserved for webcam overlay

