ASTR 421 Stellar Observations and Theory

1

Lecture 06 Opacity: II

Prof. James Davenport (UW)

Last time...

- Sources of opacity: absorption and scattering
- Mean free path (l), opacity (κ)
- Optical Depth (τ): "thick" vs "thin"

Continuum Opacity

- Continuous sources of opacity are those that work over a wide range of λ
 - e.g. bound-free & free-free transitions
 - e.g. Remember our friend the Balmer Break

H-Ion (aka H anion)

• The single e- only partially shields the nucleus, so H can attract a second e-

4

- This second e- is weakly bound, $\chi_{ion} \sim 0.75$ ev, rather than 13.6 ev for neutral H
- Thus photons with $\lambda < 1.6\,\mu m$ can ionize the extra e-, called "photodetachment"
- Important for stars with $T_{e\!f\!f} < 6000$ K (hotter stars destroy H- too easily)
- Main continuous opacity source in solar photosphere!

Total Opacity

• In practice, need to consider *all* forms of opacity in the atmosphere simultaneously. Some terms depending on T, density, metallicity:

 $\kappa_{\lambda}(\rho, T, X_i) = \kappa_{\lambda,bb} + \kappa_{\lambda,bf} + \kappa_{\lambda,ff} + \kappa_{es} + \kappa_{H-}$ bound-bound free-free bound-free electron scattering

- e- density, excitation/ionization states, other factors for the atmosphere are computed from the total opacity
- Important for estimating the Eddington Luminosity

Total Opacity

Unsold & Baschek "The New Cosmos"

Fig. 4.8.2. The continuous absorption coefficient $\kappa_{\lambda, \text{ at}}$ per nucleus in $[m^2]$ in the solar atmosphere (G2V) at $\tau_0 \simeq 0.1$ (τ_0 for $\lambda = 500$ nm), i.e. T = 5040 K, $P_e \simeq 0.32$ Pa, $P_g \simeq 5.8 \cdot 10^3$ Pa

Mean Opacity

- Opacity often averaged over all λ (or ν), written as $\bar{\kappa}$
- Important for describing the *total* opacity of a medium to all photons

7

 $\kappa_{\lambda}(\rho, T, X_i) = \kappa_{\lambda,bb} + \kappa_{\lambda,bf} + \kappa_{\lambda,ff} + \kappa_{es} + \kappa_{H-}$

- Take average as a function of λ
- Typically $\bar{\kappa}$ is called "Rosseland mean opacity", closely related to the "Planck mean opacity"

Mean Opacity

• Rosseland mean opacity:

$$\frac{1}{\bar{\kappa}} = \frac{\int_0^\infty \kappa_\nu^{-1} u(\nu, T) d\nu}{\int_0^\infty u(\nu, T) d\nu}$$

$$u(\nu, T) = \partial B_{\nu}(T) / \partial T$$

Derivative of the Planck (blackbody) function wrt Temperature

$$l = \frac{1}{n\sigma} = \frac{1}{\kappa\rho}$$

Mean opacity -> typical path length!

Mass Fractions

BOB: Ch 9.2

- Kind of non-sequitur... but it's mentioned here, and is *classic* astronomer shenanigans
- X + Y + Z = 1
- X = total fraction of mass in H
- Y = total fraction of mass in He
- Z = total fraction of mass in "metals"
- Sometimes stellar metallicity described with Z, rather than [Fe/H]

Physical/observational examples

• Let's look at a few in a little more detail...

Surface of a Star

- $\tau \equiv 0$ at the surface (by definition, i.e. a boundary condition)
- We see light down to $\tau \sim 1$
 - This is heavily wavelength dependent! (even in spectral lines themselves!)
- Photosphere is classically defined as: $\tau_{\lambda} \approx 2/3$
 - $I_{\lambda} = I_{(\lambda,0)} \ e^{-\tau_{\lambda}}$

 $e^{-2/3} \sim 0.5$, i.e. half the light attenuated

Surface of a Star

- Photosphere is wavelength dependent!
- "radius" of star is wavelength dependent
 - This also true for (exo)planet atmospheres....
- This means e.g. metallicity & composition impacts the stellar radius, since it changes opacity
 - More metals = higher opacity, increased absorption & photon pressure on gas, increased radius, lower T_{eff}

Limb Darkening

- Star (or Sun) does not *appear* to have uniform brightness across the surface (disk)
- e.g. see this actual photograph!
- Temp of gas reaching $\tau = 1$ is *lower* near limb, causing star to appear and fainter near limb, brighter in center

Limb Darkening

- One place this is SUPER important: transits!
- Planet is opaque (to 1st order)
- Limb darkening determines shape of transit esp. **ingress** and **egress**

14

Limb Darkening

 The industry standard for describing limb darkening for transits is: <u>Mandal & Agol (2002)</u>

-0.001

-0.020

-0.015

-0.010

-0.005

0.000 Phase 0.005

0.010

0.015

0.020

Maxted (208)

Examples of scattering and absorption

Mie scattering Like Rayleigh scattering , but for big particles! (DUST)

> FUN FACT: This dust is not part of the Pleiades, but is an interstellar cloud the cluster is moving through at 6-10km/s

Examples of scattering and absorption

"Bok Globules" VERY effective absorption

Examples of scattering and absorption

Barnard 68

https://www.eso.org/public/images/eso9934b/

Dust extinction

- Continuum scattering and absorption from molecules
- Silicates, hydrocarbons, PAH's... lots of complex molecules!

Dust extinction

- Curve is smooth (continuum opacity at work)
- Very important at short λ

Opacity driven dust formation (e.g. AGB stars)

At very large radius, material cools, forms dust.

Dust has VERY high opacity, blocks light from star well.

Radiation pressure ejects dust!

http://www-star.st-and.ac.uk/~pw31/AGB_popular.html

Kappa mechanism

- AKA the "Eddington Valve"
- Opacity driven pulsation (revisit this when we talk about pulsators in a few weeks)

This is opposite what we might expect, happens in ionization $\ensuremath{\textbf{shell}}$ in atmosphere

- Gas "falls", heats up, *increases opacity*
- This increases radiation pressure, pushes gas (atmosphere) out
- Temperature decreases, opacity drops
- Cycle repeats

Next time:

• Radiative Transfer!

