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Lecture 03 
Spectroscopy: I



• Blackbody (thermal) spectra


• Atomic lines (emission & absorption)


• Boltzmann and Saha equations
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Today’s Goal: Foundations of Spectroscopy

https://scied.ucar.edu/image/sun-spectrum



Where do the photons come from?
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Blackbody Spectrum
• Very commonly used as a 1st order guess for many things in astronomy 

from stars/planets, disks (both hot and cool), flares… 


• A “perfect radiator”…


• Requires Thermal Equilibrium, velocities of dense (ideal) gas follow a  
Maxwell-Boltzmann distribution


• Nothing is a perfect BB
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Blackbody Spectrum
• Defined using the Planck equation (law) 
 

• 2 sides of the distribution: 
 Wien approximation, and Rayleigh-Jean’s “tail”
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Temperature and Teff

• The “effective temperature” is the Temp that a star 
would have if it were a perfect blackbody with  
the same luminosity


• Only works at the “surface” of the star 
(more on what the “surface” is next week!)
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Wien’s Law
• Sometimes called “Wein’s displacement law”


• Basically just the derivative (peak) of the  
Wien Approximation


• OK approximation for ~hot stars 
bad for very hot or very cool stars
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λpeak = b/T
b = 2898μm
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So that nicely explains the blackbody portion  
of stellar spectra… what about all this junk?!



Absorption 
• Absorption lines form when photons of the right energy (wavelength) hit an 

electron, causing it to “jump” to another energy or orbital state, or off the 
atom entirely (ionized)

photons
n=1

n=2

n=3
n=4
n=5

ionized e-



Energy Level (Grotrian) Diagram
• Represents the Bohr model of an atom


• Includes info about quantum states for e-, 
and the “degeneracy” of each level


• Good to draw for H, He… gets messy quick  
for bigger atoms!


• The number of possible states for each energy 
level is called the “statistical weight”, g


• For Hydrogen, gn = 2n2
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https://en.wikipedia.org/wiki/Quantum_number

BOB uses n, l, ml, ms



Boltzmann Equation
• For a gas in TE, at a given temperature (T), what is the probability of finding an 

electron will be at a given energy state (n)?
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Boltzmann Equation
• For a gas in TE, at a given temperature (T), what is the probability of finding an 

electron will be at a given energy state (n)?
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nvdv = n( m
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Boltzmann Equation
• For a gas in TE, at a given temperature (T), what is the probability of finding an 

electron will be at a given energy state (n)?
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nvdv = n( m
2πkT )3/2 e−mv2/2kT 4πv2dv
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Nb

Na
=

gb

ga
e−(Eb−Ea)/kT

a,b are energy level numbers (n=1,2,3…) 



Emission
• Conceptually works opposite of absorption


• Need low density gas for photon to escape


• Otherwise photon will just re-absorb! 
(hello, thermal equilibrium)
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Kirchoff’s Laws (of spectra)
1. Dense gas emits a continuous (i.e. blackbody) spectrum


2. Hot, low density gas emits


3. Cool, low density gas absorbs
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H
https://commons.wikimedia.org/wiki/File:Spectral_lines_en.PNG



Kirchoff’s Laws - some real spectra!
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Ionization
• At higher temps, more likely to find electrons at higher energy levels 

(Boltzmann eqn)


• At very high temperatures, photons will ionize the  
electrons


• Really annoying notation enters…  
  HI is neutral hydrogen (i.e. has its e-, at any level n) 
  HII is singly ionized hydrogen (i.e. has lost 1 e-)


• For H, a photon w/ energy > 13.6 eV can ionize an e-. 
This often written as χI
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Ionization
• So in a hot gas, what is the likelihood of finding  

ionized atoms?


•
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Saha Equation
• Several forms of this (2 in BOB ch8, another in your homework!) substituting 

different variables, etc


• i.e. 


• Use Saha to calculate e.g. , the number of ionized to neutral atoms as a 

function of temperature


• The ratio of the statistical weights here is really the Partition Function ratio, 
which sums up the energies of degenerate states

Pe = nekT
NII

NI
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Ni+1
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2kT
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gi

(2πmekT)3/2

h3
e−χi/kT



Combine the Saha & Boltzmann… but don’t mix
• In a given Temp gas, electrons in atoms will be at various levels 

(Boltzmann) 


• In a given Temp gas, some fraction of atoms will be ionized, some will be 
neutral (Saha), 


• Don’t write things like 

N2/N1

NII /NI

NII /N2
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Combine the Saha & Boltzmann… Homework 2
• Because even I find this a bit confusing at times… Homework 2 is designed 

to help reinforce THE important spectroscopic result of this week’s lectures:
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Next time:
• More on spectroscopy


• Spectral Types


• Metallicity, surface gravity


• Observations


• Reading suggestion 
BOB: Ch 8 (The Classification of Stellar Spectra) 
LeBlanc: Ch 1 still
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